منابع مشابه
The Eilenberg-watts Theorem in Homotopical Algebra
The object of this paper is to prove that the standard categories in which homotopy theory is done, such as topological spaces, simplicial sets, chain complexes of abelian groups, and any of the various good models for spectra, are all homotopically self-contained. The left half of this statement essentially means that any functor that looks like it could be a tensor product (or product, or sma...
متن کاملA ZPP Lifting Theorem
The complexity class ZPP (corresponding to zero-error randomized algorithms with access to one NP oracle query) is known to have a number of curious properties. We further explore this class in the settings of time complexity, query complexity, and communication complexity. r For starters, we provide a new characterization: ZPP equals the restriction of BPP where the algorithm is only allowed t...
متن کاملNotes on the Lifting Theorem
We have seen that the proof of existence of inverses for elements of Ext(X) can be based on a lifting theorem for (completely) positive maps of C(X) into a quotient C∗-algebra of the form E/K, where E ⊆ B(H) is a C∗-algebra containing the compact operators K. That argument works equally well for arbitrary C∗-algebras in place of C(X) whenever a completely positive lifting exists. Thus we are le...
متن کاملBrown Representability and the Eilenberg-watts Theorem in Homotopical Algebra
It is well-known that every homology functor on the stable homotopy category is representable, so of the form E∗(X) = π∗(E ∧ X) for some spectrum E. However, Christensen, Keller, and Neeman [CKN01] have exhibited simple triangulated categories, such as the derived category of k[x, y] for sufficiently large fields k, for which not every homology functor is representable. In this paper, we show t...
متن کاملSpectral Theorem for Self-adjoint Linear Operators
Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Categorical Structures
سال: 2019
ISSN: 0927-2852,1572-9095
DOI: 10.1007/s10485-019-09560-2